LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis
نویسندگان
چکیده
DNA damage is tightly associated with various biological and pathological processes, such as aging and tumorigenesis. Although detection of DNA damage is attracting increasing attention, only a limited number of methods are available to quantify DNA lesions, and these techniques are tedious or only detect global DNA damage. In this study, we present a high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) in both the mitochondrial and nuclear genome. While most conventional methods are of low-sensitivity or restricted to abundant mitochondrial DNA samples, we established a protocol that enables the accurate sequence-specific quantification of DNA damage in >3-kb probes for any mitochondrial or nuclear DNA sequence. In order to validate the sensitivity of this method, we compared LORD-Q with a previously published qPCR-based method and the standard single-cell gel electrophoresis assay, demonstrating a superior performance of LORD-Q. Exemplarily, we monitored induction of DNA damage and repair processes in human induced pluripotent stem cells and isogenic fibroblasts. Our results suggest that LORD-Q provides a sequence-specific and precise method to quantify DNA damage, thereby allowing the high-throughput assessment of DNA repair, genotoxicity screening and various other processes for a wide range of life science applications.
منابع مشابه
Simultaneous quantification of DNA damage and mitochondrial copy number by long-run DNA-damage quantification (LORD-Q)
DNA damage and changes in the mitochondrial DNA content have been implicated in ageing and cancer development. To prevent genomic instability and tumorigenesis, cells must maintain the integrity of their nuclear and mitochondrial DNA. Advances in the research of DNA damage protection and genomic stability, however, also depend on the availability of techniques that can reliably quantify alterat...
متن کاملشناسایی یک حذف بزرگ در DNA میتوکندریایی بیماران ایرانی مبتلا به آریتمی قلبی
Introduction: Long QT Syndrome is one of the arrhythmic disorders of the heart that causes sudden cardiac death in patients. Most of the investigations have focused on nuclear genome for finding genetic defects in these disorders, but some of the cases with LQTS cannot be explained by mutations of identified genes. It prompted the authors to focus on the mitochondrial DNA and monitor rearrangem...
متن کاملQPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology
The quantitative PCR (QPCR) assay for DNA damage and repair has been used extensively in laboratory species. More recently, it has been adapted to ecological settings. The purpose of this article is to provide a detailed methodological guide that will facilitate its adaptation to additional species, highlight its potential for ecotoxicological and biomonitoring work, and critically review the s...
متن کاملAnalysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach
The maintenance of the mitochondrial genomic integrity is a prerequisite for proper mitochondrial function. Due to the high concentration of reactive oxygen species (ROS) generated by the oxidative phosphorylation pathway, the mitochondrial genome is highly exposed to oxidative stress leading to mitochondrial DNA injury. Accordingly, mitochondrial DNA damage was shown to be associated with agei...
متن کاملDesign a Real Time PCR with SYBR Green for quantification of HTLV-1 proviral load for blood donors
Abstract Background and Objectives In Iran, Khorasan province is an endemic area for HTLV-1 virus. Considering the inability of serological tests to determine HTLV-1 in window period, their failure to confirm the indetermination results of western blot, and given the probability for HTLV-1 transfusion transmission, a SYBR green-based Real Time PCR was set to measure the HTLV-1 proviral load. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014